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SUMMARY 

A new Lagrangian finite element formulation is presented for time-dependent incompressible free surface fluid 
flow problems described by the Navier-Stokes equations. The partial differential equations describing the 
continuum motion of the fluid are discretized using a Galerkin procedure in conjunction with the finite 
element approximation. Triangular finite elements are used to represent the dependent variables of the 
problem. An effective time integration procedure is introduced and provides a viable computational method 
for solving problems with equality of representation of the pressure and velocity fields. Its success has been 
attributed to the strict enforcement of the continuity constraint at every stage of the iterative process. The 
capabilities of the analysis procedure and the computer programs are demonstrated through the solution of 
several problems in viscous free surface fluid flow. Comparisons of results are presented with previous 
theoretical, numerical and experimental results. 

KEY WORDS Navier-Stokes equations Lagrangian method Finite element method Galerkin formulation Linear 
interpolation Free surface 

INTRODUCTION 

This paper presents the development of a new scheme to simulate numerically the two-dimensional 
flow of an incompressible fluid with a free surface. In recent years, many methods have been 
developed for calculating the steady as well as the transient dynamics of incompressible fluids with 
free surfaces. The most widely used of these has been the marker and cell (MAC) technique 
developed by Harlow and Welch' and further refined by many others.2-6 While a number of 
variations of this technique have been used to solve a wide variety of problems, methods using the 
MAC technique have the disadvantage of requiring a considerable amount of core storage. 
Recently, a great number of research papers7-17 have been published on the free surface of viscous 
flow problems and finite element techniques have been applied successfully to their numerical 
analyses. In these papers, most of the work is carried out by assuming the flow to be steady or the 
change in time to be not intensive. In addition, there has been an extended effort to use a hybrid 
method to solve this type of problem.'8-20 A partial list of developers for the analysis offree surface 
flow by finite difference as well as finite element methods based on the two-dimensional potential 
function is given in References 21 and 22. Even though the Eulerian potential problem needs only 
one variable, the potential C#I in either two or three space dimensions, its main disadvantage is the 
requirement of numerical differentiation to obtain the velocities. 
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Until very recently, finite element solutions of unsteady, free surface flow invariably employed 
the Eulerian description of the motions. In this description, the mesh of elements remains fixed 
relative to the observer, while the fluid moves through the mesh with time. In a strict application of 
the method, each element is forced to be homogeneous in that it is characterized by uniform 
density, pressure, velocity and type of material. This method has the tremendous advantage of 
being able to handle extreme fluid distortions, but the material interfaces may become hard to 
identify. The method also suffers from the inability to resolve fine structures which move with the 
fluid, unless the entire mesh of elements is made so fine that numerical calculations become 
impracticable. 

To circumvent the above-mentioned difficulties associated with free boundaries in Eulerian 
methods, this paper deals in detail with the finite element technique combined with the Lagrangian 
description. In the following, it will be demonstrated how a Lagrangian finite element method may 
be implemented for an incompressible Newtonian liquid. In the present approach, the domain is 
assumed to be covered by a mesh of triangular finite elements whose vertices move with the fluid. In 
this process, fluid in the interior of a finite element always remains in that element and fluid 
boundaries always move with the element boundaries. In an incompressible Lagrangian 
calculation, the volume of each element must remain constant during the course of a calculation. 
To satisfy this constraint, an effective splitting-up time discretization procedure is employed. In 
this splitting-up method, an auxiliary velocity field is computed first, which accounts for all 
contributions to the acceleration, except pressure, and satisfies the velocity boundary conditions. 
Then, the final velocities are evaluated by adding to the auxiliary velocities pressure contributions 
which are computed to satisfy the incompressibility condition. This method provides the most 
promise for obtaining Lagrangian finite element solutions to the Navier-Stokes equations with 
equal-order pressure and velocity field representations. Although the Lagrangian method is not 
applicable to flows undergoing large distortions, where meshes can be twisted into unacceptable 
shapes, its advantage is the ease with which it handles free surfaces and interfaces, which makes it 
applicable to a wide variety of problems. In the authors’ opinion, the resulting method is quite 
competitive with existing finite difference methods and at the same time offers significant 
advantages over both existing Lagrangian finite difference and finite element methods. 

Examples of problems investigated by the present computing technique are (1) the breaking of a 
dam, ( 2 )  the Rayleigh-Taylor instability of a falling free surface and (3) the non-linear oscillation. 
All these problems are two-dimensional in nature. The present results are compared with those 
which are available in the literature and are based on alternative approaches for treating 
incompressibility constraint and convective acceleration terms. From comparative studies, it is 
concluded that the present approach based on the Lagrangian formulation has great advantages 
for the analysis of fluid flow with surfaces. 

BASIC EQUATIONS 

Throughout this paper, the equations are described using indicia1 notation and the summation 
convention for repeated indices. The problem under consideration is the unsteady motion of a 
surface wave under gravity in a rectangular tank. Let V be the fluid domain which is surrounded 
by a piecewise smooth boundary S .  To illustrate the fluid mechanical content of the formulation, 
the equations of conservation of momentum and mass for incompressible Newtonian fluids in the 
conventional Eulerian form are given by the Navier-Stokes equation and the equation of 
continuity as follows: 
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ui,i = 0 in I/. (2) 
Here ui = ui(x, t )  are the components of the velocity field in a spatial co-ordinate system xi(i = 1,2), 
x is used as shorthand for (xl,x2), p is the fluid density, f i ( t  = 1,2) are the components 
of the gravitational acceleration and t is the time. The total stress tensor aij is given by 

aij = - P 6 i j  + p ( u i , j  + uj,i), (3) 
where p is the pressure and p is the coefficient of viscosity. The position vector for a fluid element, x, 
satisfies the equation 

dxldt = V. (4) 

The left-hand side of equation (1) is the total convective derivative of ui, which represents the time 
rate of change of ui in a fluid element moving with the fluid; i.e., it is the time rate of change for a 
Lagrangian fluid element. Therefore the governing equations for the Lagrangian formulation are 
given by 

"'1 = oij,j + pfi in v, Pat X i  

where Jxi indicates the material co-ordinates X i  are held constant in taking the time derivative. In 
this formulation, the co-ordinates x i  appear as dependent variables and the independent variables 
are instead fluid particle labels. The particle labels are conveniently defined by the initial location of 
the fluid particles xp at reference time to. The co-ordinates, when viewed as functions of particles 
and time, are then expressed as the displacement functions xi = xi(xp, to, t), where xo = (xy, xi). If 
the fluid particle is defined as P,  = P,(xp ,  to ) ,  then the velocity vectors, pressure field and position 
of each fluid particle P ,  with the initial location xp at time to  are defined by 

(74  

p" = p(P,, t")  at time t" (7b) 

u; = Ui(P,, t")  

x; = Xi(P,, t " )  I (74  
and 

(84  

p " + ' = p ( P , , t " + ' )  at time t"+'.  (8b) 

u;" = ui(PK,t"+l) 

x;+l = Xi(PK,L"+' )  I (84 
The Lagrangian velocity field is related to the co-ordinates by the definition 

d X i ( P K ,  tyat = Ui(P,, t). (9) 

The dependent variables in the present analysis are the Lagrangian velocity field ui and the 
Lagrangian pressure field p. 

To complete the formulation of the basic equations, a set of boundary and initial conditions is 
required. The continuum boundary conditions are of two types those specifying velocity and those 
specifying stress. Application of the specified velocity condition in discrete form is straightforward. 
The equation for the particular velocity component at  a boundary node is replaced by a constraint 
condition enforcing the proper boundary value. The rigid wall boundary conditions are the 
simplest to derive they follow directly from the momentum equations. For a free-slip wall, the 
normal velocity must vanish; for a no-slip wall, the tangential components must, in addition, 



956 B. RAMASWAMY A N D  M. KAWAHARA 

vanish. These conditions in general can be defined as 

ui = Oi on S,, (10) 

where the superposed A denotes the function which is given on the boundary. 
Boundary conditions at the free surface S ,  remains the most interesting of these two conditions. 

For the numerical method, they are the most difficult conditions to apply accurately. The 
principles that form the basis for the free surface boundary conditions are stated as follows: 

( 1 )  Stress tangential to the surface must vanish.. 
( 2 )  Stress normal to the surface must exactly balance any externally applied normal stress. 

These conditions are expressed as 

1 (1 1) t .  = g . . n . =  F. on s 
1 1 1 1  

where nj is the direction cosine of the outward normal on the boundary with respect to the x j  axis. 
In the present analysis, ti is assumed to be zero. Moreover, S ,  and S ,  are two disjoint non- 
overlapping subsets of the boundary S .  

In the case of Lagrangian free fluid boundary, the time evolution of the height function is 
governed by a kinematic equation expressing the fact that the free surface must move with the fluid 

a m x ,  = 0, (12) 

where q is the surface elevation measured from the fundamental fluid level. It is clear that equation 
(1 2) is Lagrangian in both vertical and horizontal directions. 

The initial conditions for the present Lagrangian Navier-Stokes problem consist of specifying 
the values of velocity and pressure at the initial time. 

U i ( X i , 0 )  = UP(X,), 

 xi, 0)  = P'O'(xi), 

with the initial velocity uio)(xi) satisfying the incompressibility condition 

BASIC CONCEPTS OF THE LAGRANGIAN METHOD 

In order to implement a numerical solution procedure for the Lagrangian formulation, it is 
necessary to discretize time and fluid material. The basic concept of the analysis presented in this 
section is the idea that the material time derivative can be determined approximately by the 
functions known at both deformed and undeformed positions during a short time increment. The 
function at the deformed position cannot be obtained before computation; thus an iterative 
computation is necessary. Assume the total time interval is divided into many short time 
increments, denoted by Ar, and the fluid is discretized into many triangular finite elements. 

The material acceleration is the time derivative for the change of location of a fluid particle. It can 
be approximated by the increment of velocity using equations (7) and (8) as in the following form: 

aui/at l x i  (u;+ 1 - u;)/At. (16) 

The location of a nodal point after the increment At is given 
ytn+ 1 

Xi(P, ,  t " + ' )  = x; + J ui(P,, t')dr'. 
1' = I, 
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The discretization of time is performed by using the following approximation for the integral in 
equation (17): 

Introducing equation (18) into equation (17), the equation for updating the co-ordinates can be 
obtained 

x i ( P K ,  t"+')  = x;+' N x ;  + $At(u;+' + vr). (19) 

Since the location of a particle, x;", is a function of vr", which is not known a priori, the finite 
element analysis based on equation (19) must be solved by some iterative procedure which must be 
repeated in every time step. The algorithm for an iterative process is briefly explained in the 
following lines. 

Let u;, p",C and x;, the velocity, pressure, body forces and nodal co-ordinate values, be known at 
time t". From v;,f;, p", x; and boundary specifications, the fields v;' ', p"+ and xr+ are calculated 
as follows. At the initial step of iteration, velocity orf'('), pressure p n + ' ( 0 )  and position x;+'(O) 
are computed as 

g"i(vl,C, xl), (20) q + ' ( o )  = 

(21) p + l ( O )  = h p + l ( O )  ( i ,X;L 

where U" ;+ ' (O)  and u r + ' ( O ) ,  for example, mean the value of the intermediate and final velocity 
components at the initial step of iteration in the (n  + 1)th time interval; gi and h mean that the 
velocity and pressure can be computed following the time discretization procedure (explained 
later) based on the previously known velocity ur and body forces f r  at position x;  and at time 
t". At the mth iteration cycle (where rn = 1,2,. . .; is the maximum number of iterations), the 
values are updated by the following equations: 

x;+' (~)  N x ;  + * A ~ ( L ( ' + ' ( ~ )  + 0;). (27) 
Equations (25) and (26) specify that the velocity and pressure can be computed using the latest 
positions of the fluid particles. The iteration is repeated until the computed velocity satisfies the 
following convergence criterion: 

I < E ,  (28) n +  l ( m )  - q+ l ( m - 1 )  I vi 

where E is a previously defined small value. If the process converges, then the Lagrangian variables 
are given by 
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In practical applications, the maximum number of iteration cycles in each time step was 2-3 for 
normal computation. Thus the velocity and pressure for the change of position of a fluid particle 
can be computed. The computation is repeated for all n = 1,2,. . . , where N is the total number of 
time points. 

WEIGHTED RESIDUAL FORMULATIONS 

A weak formulation of problem (5)-( 15) is obtained by multiplying the differential equations by 
suitable weighting functions and integrating over a domain V which is bounded by a surface S with 
a unit normal ni. Multiply the momentum equation(5) by the weighting function uT and the 
continuity equation (6) by the weighting function q* and then integrate over V. After integration by 
parts of the stress term, use of the divergence theorem and of the boundary condition (1 I) ,  the 
following weak form of the original problem is obtained 

r 

{ u: [ - pdij + v ( u ~ . ~  + u ~ . ~ ) ]  n j }  dS, + J s  
n 

with 
ui=Ci  on S , ,  

(33) 

(34) 

U i ( X i ,  0) = U $ " ( X i ) .  (35) 
Under suitable smoothness conditions for the boundary data Ci and Ti, the Navier-Stokes problem 
(32)-(35) admits at least one solution. 

TIME DISCRETIZATION 

In order to implement a numerical solution procedure for the Lagrangian formulation in this 
paper, the momentum equation and the incompressibility constraint of the Navier-Stokes 
problem are treated in two phases. This section describes how to compute gi, h and gi in equations 
(20)-(22), which in turn help to compute Gi,p  and ui in equations (24)-(26). 

Phase I :  Explicit Lagrangian calculation 

the following equation are valid: 
Denoting the exact velocity and pressure during the (n  + 1)th time instant by ul' and p n + ' ,  then 

(36) q + l -  - u i  n - A t [ f i + '  - ~ ( ~ l , j + ~ J , i ) , j - f : ] ,  

u;,: ' = 0. (37) 

At first, an intermediate Lagrangian nodal velocity field Gl+', not satisfying the incompressibility 
constraint, is derived from the previous cycle's velocity vectors, position vectors and body forces by 
employing a purely explicit Eulerian first-order scheme 
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( u T u : , ~  + u:ur,i)njdS 

u " ; + ' = O i  on S,.  (39) 

The velocity field fir+' obtained from equation (38) does not satisfy the incompressibility condition, 
because it is derived from a discretized version of the weak form of the momentum equation in 
which the pressure terms are omitted. 

Phase 11: Implicit Lagrangian calculation 

The main objective of the present implicit Lagrangian phase is to obtain the exact velocity which 
satisfies the incompressibility constraint that has been accelerated by pressure forces at  the 
advanced time level. Once the intermediate velocity has been computed from equation (38), the 
end-of-step velocity uY+' is obtained by adding to 6;'' the dynamical effect of the still unknown 
pressure p n + ' ,  which is to be determined so that the weak form (33) of the incompressibility 
condition remains satisfied 

r r 

J (q* u;,: I )  d v = 0. 
V"+ I 

Taking divergence on both sides of equation (40), together with the incompressibility constraint 
u?,: ' = 0, the following linear system of equations which governs the pressure field can be derived 

J (q*pyi:')dV = (l/At) J (q*fi:,:')dl/: 
V"+l  V"+ 1 

The left-hand side of equation (42) contains derivatives of second order which may be reduced to 
first order through an integration by parts. Equation (42) is then 

where the divergence theorem has been used to obtain the boundary integral. Based on the authors' 
experience with numerous applications of this method to a diverse range of problems, the above 
equation possesses no particular difficulty in solution and does not produce any spurious pressure 
or chequer-boarding. To solve equation (43), the following boundary conditions are applied: 

p " + ' = O  on s , ,  (44) 

pyi+lni=O on S,. (45) 
Once the pressure has been determined from equation (43), Lagrangian velocities are calculated 
from equation (40). Finally, the vertex co-ordinates are moved according to equation (19). This 
completes the updating of all quantities. 
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FINITE ELEMENT METHOD 

The fully discrete form of problems (36)-(45) is obtained by discretizing the domain Vinto non- 
overlapping subregions called finite elements. In each element, the unknown fields are appro- 
ximated by simple polynomial functions. For the present class of problems, let the velocity and 
pressure be represented within an element by 

then the corresponding weighting functions are 

where @, is the interpolation function, umi represents the nodal value of the velocity at the ath node 
of the finite element in the ith direction and vf is the nodal value of the corresponding weighting 
function p a  is the nodal value for pressure at the ath node of the finite element and pX is the nodal 
value of the corresponding weighting function. Substituting equation (46)-(49) into (40), (42) and 
(43) and considering the arbitrariness of the weighting functions, the finite element equations can 
be derived as follows: 

where 

In equations (50) and (52), MmD means the lumped mass matrix obtained simply by summing across 
each row of the consistent mass matrix M,, and placing the results in the diagonal. 

The overall iterative solution method is illustrated in Figure 1. Unlike most previous finite 
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element methods, the current formulation uses a segregated solution approach; i.e., the velocities 
and pressure are solved for in a sequential manner rather than simultaneously. The use of a 
segregated solution results in a considerable saving of storage and execution time and allows for 
practical size problems to be treated. As indicated in Figure 1, this overall cycle is repeated for as 
much elapsed time as desired. 

v at t = O  
- - Q t - 

I g  
gate 

NUMERICAL EXAMPLES 

Broken dam problem 

In this example, a rectangular column of water in hydrostatic equilibrium is confined between two 
vertical walls, as shown in Figure 2. The water column is 3.5 units wide and 7.0 units high. Gravity 
is acting downwards with unit magnitude. The dam holding the reservoir is removed instanta- 
neously at time t = 0 and the liquid falls away under the force ofgravity. The total numbers of nodal 
points and finite elements are 225 and 392 respectively. Figures 3-7 show a typical sequence of 
mesh configuration, velocity and pressure plots for the broken dam. From these figures it can be 
seen that the front of the wave is much retarded in its initial motion and lacks the long sharp tip 
predicted by analysis. Experimental results for this problem have been reported for the position 
versus time of the leading edge of the water as it flows to the right (Figure 8). This is a good 
test problem because it has simple boundary conditions and simple initial configuration. The 

n 

T 
D 

I--.+ 
Figure 2. Problem definition for the broken dam problem 
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Figure 3. Computed results at time t = 1.0: (a) mesh division; (b) velocity vectors; (c) pressure distribution 

appearance of both a vertical and horizontal free surface, however, provides a check on the 
capability of the present Lagrangian approach to treat free surfaces that are not single-valued with 
respect to x1 or x2. The comparison of the computed results with those from  experiment^^^, plotted 
in Figure 8, shows close agreements in all respects. 
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Figure 5. Computed results at time t = 3.0 (a) mesh division; (b) velocity vectors; (c) pressure distribution 
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- : Experimental 
0 : Present method 

0 

2 -  

I 
0 1 2 3 

Figure 8. Comparison of calculated results with experimental data for the broken dam problem 

Non-linear oscillation 

This example has been chosen to demonstrate the validity of the present computing technique 
with highly non-linear effects. Fluid initially at rest in a rectangular tank is impulsively set into 
oscillation by a cosine pressure pulse applied at the free surface. The linear analysis for the change 
in surface elevation, u, above the initially undisturbed free surface height D gives 

where 
t = kD tanh (kD).  

(53) 

(54) 
Here k = 2 ~ 1 2 ,  where 2 is the disturbance wavelength and y is the acceleration of gravity. 
The initial pressure pulse on the free surface is described by 

p(t) = A6(t)cos(kx1), (55 )  
where d(t) is the Dirac delta function. 

A schematic view of the container used for the analysis is illustrated in Figure 9. In the present 
example, the fluid initially occupies a region 4.8 units wide and 4.0 units high. A gravity 
acceleration of one unit acts downwards and the amplitude of impulsive motion is assumed to be 
unity. The total numbers of nodal points and finite elements are 273 and 480 respectively. The 
calculation was performed with a viscosity of v = 0.01 to compare the computed results with the 
MAC c a l ~ u l a t i o n . ~ ~  
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p ( t )  = A6(t)cos(kxl) 

D 

-.-----+ 
Figure 9. Problem definition for the oscillating flow problem 

Calculated results for this problem are shown in Figures 10-13. Non-linear effects influence the 
amplitude of the surface, as indicated in Figure 13. The elevated portion of the surface, the spike, 
has a larger amplitude than the linear theoiy would suggest, while the depressed portion of the 
surface, the bubble, has a smaller amplitude. The comparison of the MAC and the present 
Lagrangian method is also shown in Figure 13. Close agreement have been obtained. 

Rayleigh- Taylor instability problem 

‘Rayleigh-Taylor instability’ refers to the principle that when two superposed fluids of different 
densities are accelerated in a direction perpendicular to their interface, this surface is stable or 
unstable according to whether the acceleration is directed from the heavier to the lighter fluid or 
vice versa. Since the present Lagrangian technique is applied to only one fluid with a free surface, 
the above definition is restated in the following manner. With gravity pointing downwards, out of 
the fluid, the free surface irregularities are unstable, which is known as ‘Rayleigh-Taylor 
instability’. In every example, the pressure pulse was applied to the plane surface of a quiescent. The 
pressure pulse is given by equation (55). 

In the first example, the fluid initially xcupies a region 4.8 units wide and 2.0 units (shallow 
water) high, as shown in Figure 14. A gravity acceleration of one unit acts downwards and the 
amplitude of the impulsive motion is assumed to be A = 5.0 (large impulse). The total numbers of 
nodal points and finite elements are 505 and 960 respectively. The calculation was performed with a 
viscosity of v = 0.01. Figures 15-19 show a sequence of mesh configuration, velocity and pressure 
plots at a sequence of times, illustrating the growth of instability well into the spike and bubble 
phases. Figure 20 shows the surface displacement histories of the spike and bubble. From this 



970 B. RAMASWAMY A N D  M. KAWAHARA 

Figure 10. Mesh configuration in non-linear oscillation for the calculation with A = 1.0, D = 4.0. The times are 
2~0,4~0,6~0,8~0,10~0,12~0 
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TIME 
Figure 13. Amplitudes of spike and bubble as functions of time for the oscillating flow 

E. 
p ( t )  = AG(t)cos(kxl) 

Figure 14. Problem definition for the Rayleigh-Taylor instability problem 
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Figure 20. Amplitudes of spike and bubble as functions of time for calculation with A = 5.0, D = 2.0 

figure, it can be seen that the spike, however, quickly reaches the free fall stage, as expected. 
The results described in the last example are for a fluid whose depth is very shallow. In this 

example, the value of D is assumed to be 8.0 units (deep water), the conditions being otherwise 
identical to those for the calculation described in the last example. The total numbers of nodal 
points and finite elements are 273 and 480 respectively. The computed results are illustrated in 
Figure 21. Figure 22 shows the surface displacement histories of the spike and bubble, which 
clearly reflect the non-linear effects. 

In the final example, the coefficient of viscosity is assumed to be v = 2.0, the amplitude of the 
impulsive motion is A = 0.5 and the other conditions are identical to the second example. The 
computed results are illustrated in Figure 23. A comparison between Figures 23 and 21 shows the 
viscous effect slowing the motion considerably, increasing the width of the spike and narrowing the 
bubble, so that the basic harmonic of the perturbation persists longer. Figure 24 shows the spike 
and bubble motions quantitatively. 

CONCLUDING REMARKS 

The conclusion from the work described in this paper are: 

(1) A new computing technique and algorithm for using a Lagrangian two-dimensional mesh 
of triangles are described to represent and solve free surface problems in incompressible 
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Figure 21. Computed results at time t = 2.5: (a) mesh division; (b)  velocity vectors; (c) pressure distribution 
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Figure 22. Amplitudes of spike and bubble as functions of time for calculation with A = 5.0, D = 8.0, v = 0.01 

hydrodynamics. The examples shown demonstrate the method’s flexibility in terms of geometry 
and boundary conditions, as well as its robustness in obtaining solutions to difficult problems. In 
addition to the examples shown here, the authors have successfully applied this new finite element 
method based on Lagrangian specification to a number of other test cases. 

(2) The proposed method uses Lagrangian specification for tracking the fluid motion, but solves 
the Eulerian equation of motion in a fashion similar to the MAC technique, which makes the 
treatment of free surfaces and material interfaces straightforward. 

(3) The algorithm for the Lagrangian process consists of an outer time-stepping loop and inner 
co-ordinate iteration loop. By using proper time increments in the outer loop, the desired velocity 
in the inner loop can be made arbitrarily close to the known velocity in the previous time step. 
(4) The present work shows that the use of the Lagrangian finite element method for free surface 

viscous flow problems is elegant and that results of acceptable accuracy can be produced with a 
reasonable expenditure of computing effort. It also has the ability to calculate long-time solutions 
accurately without the benefit of artificial or numerical averaging. In addition, it is very easy to 
modify for multi-material studied and the incorporation of surface tension effects. 

( 5 )  The iterative solution methods used in the current formulation provide considerable savings 
in computer execution times and storage requirements compared with other finite element 
methods. This saving allows the new Lagrangian formulation to be competitive with existing 
finite difference methods, while maintaining the traditional geometric flexibility of finite elements. 

(6) The present computing technique provides a viable computational method for solving 
problems with equality of representation of the pressure and velocity fields. Its success has been 
attributed to the strict enforcement of the continuity constraint at every stage of the iterative 
process. This approach is not affected by the spurious phenomenon of spatial oscillations of the 
pressure, the so-called chequer-board splitting encountered in some other studies. 

(7) In general, the Lagrangian formulation is very useful for problems not involving large 
distortions, but requiring an accurate knowledge of free fluid boundaries. 

(8) Work is currently underway to develop this method further in a number of areas. These 
areas include: the extension to three-dimensional geometries, coupled fluid/thermal problems 
and mixed Lagrangian-Eulerian descriptions to deal with problems involving free boundaries. 



982 

I i 
I 
i 

B. RAMASWAMY A N D  M. KAWAHARA 

la : 0 



VISCOUS FREE SURFACE FLUID FLOW 983 

8 

6 

w 
CI 
3 

4 
E 

4 $ 

2 

I I I I 

a -: MAC 

IMPLUSE 
THEORY 

0 

TIME 

Figure 24. Amplitude of spike and bubble as functions of time for calculation with A = 0.5, D = 8.0, v = 2.0 
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